منابع مشابه
On organizing principles of discrete differential geometry. Geometry of spheres
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consis...
متن کاملSpacetime geometry of static fluid spheres
We exhibit a simple and explicit formula for the metric of an arbitrary static spherically symmetric perfect fluid spacetime. This class of metrics depends on one freely specifiable monotone non-increasing generating function. We also investigate various regularity conditions, and the constraints they impose. Because we never make any assumptions as to the nature (or even the existence) of an e...
متن کاملUncertain Geometry with Circles, Spheres and Conics
Spatial reasoning is one of the central tasks in Computer Vision. It always has to deal with uncertain data. Projective geometry has become the working horse for modelling multiple view geometry, while modelling uncertainty with statistical tools has become a standard. Geometric reasoning in projective geometry with uncertain geometric elements has been advocated by Kanatani in the early 90’s, ...
متن کاملContact Spheres and Hyperk¨ahler Geometry
A taut contact sphere on a 3-manifold is a linear 2-sphere of contact forms, all defining the same volume form. In the present paper we completely determine the moduli of taut contact spheres on compact left-quotients of SU(2) (the only closed manifolds admitting such structures). We also show that the moduli space of taut contact spheres embeds into the moduli space of taut contact circles. Th...
متن کاملSasakian Geometry and Einstein Metrics on Spheres
This paper is based on a talk presented by the first author at the Short Program on Riemannian Geometry that took place at the Centre de Recherche Mathématiques, Université de Montréal, during the period June 28-July 16, 2004. It is a report on our joint work with János Kollár [BGK03] concerning the existence of an abundance of Einstein metrics on odd dimensional spheres, including exotic spher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2015
ISSN: 0024-3795
DOI: 10.1016/j.laa.2015.04.012